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1 Sheaf Cohomology and Acyclic
resolutions

Let R be a ring and (X,OX) a ringed space over R.

Definition 1.1. For an OX-Module F , we defined the cohomology of F as the right
derivation of the left exact functor Γ(X,−) : OX -Mod → R -Mod,F 7→ Γ(X,F) =
F(X): For n ∈ N0

Hn(X,F) = RnΓ(X,F).

Remark. This also defines the cohomolgy of a sheaf F of abelian groups on X, because
F can be regarded as a Z-module, Z being the constant Z-valued sheaf on X.

For the theoretic construction, injective resolutions were used, but we learned that we
can use a greater class of objects to resolve F for easier computation.

Definition 1.2. Let A,B be abelian categories, A with enough injectives, F : A → B
a covariant left exact functor. We call I ∈ A F -acyclic iff for all n > 0 we have
RnF (I) = 0.

Let A be any object in A. An acyclic resolution of A is an exact sequence 0→ A→
I0 → I1 → . . . , where for all n ≥ 0, In is F -acyclic.

Theorem 1.3. Let 0→ A→ I• be an F -acyclic resolutions of A, then there is a natural
isomorphism RnF (A) ∼= Hn(F (I•)).

We applied this to the section functor Γ and defined (Γ-)acyclic OX-modules. In this
talk, we will look at different examples of acyclic sheaves and OX-modules.

A useful criterion to find classes of acyclic objects is the following:

Lemma 1.4. Let A,B, F : A → B as above. Let I ⊂ ObA be a subset such that the
following conditions are satisfied:

(i) If I is an injective object of A, then I ∈ I.

(ii) Let 0→ X ′ → X → X ′′ → 0 be a short exact sequence in A with X ′, X ∈ I. Then
X ′′ is in I and F (X)→ F (X ′′) is surjective.

Then every object in I is F -acyclic.
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Proof. Let A ∈ I. Since A has enough injectives, we get an injective resolution

0→ A→ I0
d0−→ I1

d1−→ . . .

By (i), I0 is in I and so we can apply (ii) to the short exact sequence

0→ A→ I0
d0−→ im(d0)→ 0.

This shows that im(d0) ∈ I and that

0→ F (A)→ F (I0)
F (d0)−−−→ F (im(d0))→ 0

is exact, i. e. F (im(d0)) = im(F (d0)).
This was the base case for our induction. Now let n > 0 and assume that im(dn−1) ∈ I

and F (im(dn−1)) = im(F (dn−1)).
In ∈ I because of (i), so we can apply (ii) to the s.e.s.

0→ im(dn−1) = ker(dn)→ In
dn−→ im(dn)→ 0.

This means that also im(dn) ∈ I and gives us exactness of the sequence

0→ F (im(dn−1))→ F (In)
F (dn)−−−→ F (im(dn))→ 0.

Hereby we can conclude that

im(F (dn−1)) = F (im(dn−1)) = ker(F (dn))

and hence RnF (A) =
ker(F (dn))

im(F (dn−1))
= 0.
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2 Flabby Sheaves and Resolutions

In this chapter, let X be a topological space.

Definition 2.1. We call a sheaf F on X flabby (sometimes also by the french word
flasque), if for every open subset U ⊆ X the restriction map ρXU : F(X) → F(U) is
surjective.

Remark. Let F be a flabby sheaf on X and U ⊆ X open. Then F|U is a flabby sheaf on
U : If V ⊆ U is open, then it is also open in X. Therefore the composition of restrictions
F(X)→ F(U)→ F(V ) is surjective and hence F(U)→ F(V ) is surjective.

The following example shows that flabby really means “functions can be extended”.

Example 2.2. The sheaf of locally constant Z-valued functions Z on X is flabby if and
only if X is irreducible (i. e. if any two nonempty open sets have nonempty intersection,
also called hyperconnected), because in this case locally constant functions on a nonempty
open subset U ⊆ X are already constant and Z(U) ∼= Z. An example for an irreducible
space is C with the Zariski topology, which is just the cofinite topology, where the closed
sets are exactly the finite ones. On the other hand, Z on C with the standard topology
is not flabby, because we can find two nonempty disjoint subsets, e. g. U = B1(−2)
and V = B1(2). Then the function f ∈ Z(U ∪ V ) with f |U = 0 and f |V = 1 can not be
extended to a locally constant function on C.

We will now see an easy, canonical, and functorial way to construct flabby resolutions
for any sheaf or OX-module. Later, we will see that this is in fact an acyclic resolution,
allowing us to compute cohomology.

Definition 2.3 (Godement-Functor). Let F be a sheaf on X. We define the sheaf FGod

as follows: For every open subset U ⊆ X, we set

FGod(U) =
∏
x∈U

Fx

with the obvious restriction maps. Note that in this case, they are actually restrictions,
because an element s ∈ FGod(U) can be explicitly regarded as a function U →

∐
x∈U Fx,

which we can restrict to V . With this in mind, it is easy to see that FGod is indeed a
sheaf and flabby.

Furthermore, there is an injective morphism of sheaves ιF : F → FGod, that for every
U ⊆ X open maps s ∈ F(U) to (sx)x∈U ∈ FGod(U).

Given a morphism φ : F → G of sheaves, we define φGod : FGod → GGod with
φGodU =

∏
x∈U φx. This is a morphism of sheaves.
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Hereby we obtain a functor −God from the category of sheaves to the full subcategory
of flabby sheaves. The morphism ιF is functorial in F .

If (X,OX) is a ringed space and the sheaf F that we started with is an OX-module,
FGod is as well: Addition is defined pointwise in the stalks, and scalar multiplication
of a ∈ OX(U) with (sx)x∈U is defined as (axsx)x∈U ∈ FGod(U). Hence we get a functor
−God from the category of OX-modules to the full subcategory of flabby OX-modules.
Here, ιF is a functorial homomorphism of OX-modules.

Definition 2.4 (Godement-Resolution). Let F be an OX-module. Using the above
construction, we set F0 := FGod and get a functorial exact sequence of OX-modules

0→ F ιF=:δ−1−−−−−→ F0 → coker(ιF)→ 0

Now (coker(ιF))God =: F1 is a good candidate to continue our resolution, as we already
know it is flabby. Inductively, we define for n > 0:

� Fn+1 := (coker(δn−1))God

� The morphism δn : Fn → Fn+1 is defined as the composition Fn → coker(δn−1)→
(coker(δn−1))God. Because the second arrow is injective, we get the exactness of
the resulting flabby resolution

0→ F ιF−→ F0 δ0−→ F1 δ1−→ F2 δ2−→ . . .

Remark. In general, derived functors depend on the choice of injective resolution and
thus are only well-defined up to natural isomorphism. For the special case of sheaf
cohomology though, we now have a canonical and functorial way to compute it, so every
Hn(X,−) is a well-defined functor.

Example 2.5. If (X,OX) is a ringed space and I an injective OX-module, then I is
flabby.

Proof. By Definition 2.3, there is a flabby OX-module IGod and an injective homomor-
phism I → IGod. Because I is injective, it is thus a direct summand of IGod and hence
flabby itself. (This works because a finite direct sum is a direct product, so for every
U ⊆ X we can write IGod(U) = I(U)⊕ I ′(U) without sheafifying).

Lemma 2.6. Let 0 → F ′ α−→ F β−→ F ′′ → 0 be a short exact sequence of sheaves with
F ′,F flabby. Then βX : F ′(X)→ F ′′(X) is surjective and F ′′ is flabby.

Proof. We can consider F ′ as a subsheaf of F , more specifically as ker β. Now let
s ∈ F ′′(X). We define the set

C := {(U, t) |U ⊆ X open, t ∈ F(U) s. t. βU(t|U) = s|U},

i. e. we look at subsets of X where we can find a preimage for s. Our goal is to find
some t ∈ F(X) such that (X, t) ∈ C.
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C is nonempty, because (∅, ∗) ∈ C. We can order C by (U, t) ≤ (U ′, t′) ⇔ U ⊆
U ′ and t′|U = t. Then it is inductively ordered by this relation, i. e. every chain has an
upper bound given by the union of the sets and the glued-together sections. We apply
Zorn’s Lemma to get a maximal element of C, say (V, t). We now proof that V = X.

Suppose there exists x ∈ X \V . Then there is a neighborhood W of x and t′ ∈ F(W )
such that (W, t′) ∈ C (because we know βx : Fx → F ′′x is surjective, that means β is
surjective “near” x). Now, since both t and t′ get mapped to s on V ∩ W , we get
t|V ∩W − t′|V ∩W ∈ ker β(V ∩W ) = F ′(V ∩W ). Since F ′ is flabby, we can extend this
to some t′′ ∈ F ′(W ) ⊆ F(W ). Then, t and t′ + t′′ agree on V ∩W and can be glued
together to a section in F(V ∪W ) that extends t and gets mapped to s|V ∪W under β,
contradicting the maximality of V .

Now to show that F ′′ is flabby, we can use what we’ve just shown. For U ⊆ X open,
we get surjectivity of βU : F ′(U) → F ′′(U) by applying the same proof as above to
F ′|U ,F|U ,F ′′|U , since F ′|U and F|U are obviously also flabby. Then it is obvious from
the diagram that the right vertical arrow must also be surjective.

F(X) F ′′(X)

F(U) F ′′(U)

Corollary 2.7. All flabby sheaves (of abelian groups) are Γ-acyclic.

Proof. This follows from Lemma 1.4, Example 2.5 and Lemma 2.6.
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3 Soft and Fine Sheaves

3.1 Topological Preliminaries

Definition 3.1. A topological space X is called paracompact if every open covering of
X has an open refinement that is locally finite.

Remark. Every closed subspace of a paracompact space is paracompact.

Definition 3.2. A topological space X is called Hausdorff space if for every two points
x, y ∈ X, x 6= y there exist open neighbourhoods x ∈ U and y ∈ V such that U ∩V = ∅.

Theorem 3.3 (Tietze Extension Theorem). Let X be a topological space. Then the
following properties are equivalent:

(i) For any two closed subsets A,B ⊆ X with A ∩ B = ∅, there exists a continuous
function f : X → [0, 1] such that f(a) = 0 for all a ∈ A and f(b) = 1 for all b ∈ B.

(ii) For any two closed subsets A,B ⊆ X with A∩B = ∅, there exist open disjoint sets
U and V such that A ⊆ U and B ⊆ V .

(iii) For every closed subset A and every neighborhood W of A there exists an open
neighborhood U of A such that A ⊆ U ⊆ U ⊆ W .

(iv) For every closed subspace A ⊆ X and continuous map f : A → R there exists a
continuous function f̃ : X → R such that f̃ |A = f .

Definition 3.4. A topological space X that satisfies the above properties is called
normal.

Lemma 3.5 (Shrinking Lemma). Let X be a normal topological space and let (Ui)i∈I be
a locally finite open covering. Then there exists another open covering (Vi)i∈I such that
for all i ∈ I, Vi ⊆ Vi ⊆ Ui, i. e. we can shrink the original sets to get a locally finite
covering by closed sets.

Remark. This assumes the Axiom of Choice.

Proposition 3.6. Every paracompact Hausdorff space is normal.

Example 3.7. Differential manifolds over R,C are paracompact Hausdorff.
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3.2 Soft Sheaves

Definition 3.8. Let X be a topological space and F a sheaf on X. For a subspace
Z ⊆ X, we define

F(Z) :=

{
(si, Ui)i∈I

∣∣∣∣Ui ⊆ X open with Z ⊆
⋃
i∈I

Ui,

si ∈ F(Ui) s.t. ∀ i, i′ ∈ I, z ∈ Z ∩ Ui ∩ Ui′ : (si)z = (si′)z

}
/∼

with (si, Ui)i∈I ∼ (tj, Vj)j∈J ⇔ ∀ i ∈ I, j ∈ J, z ∈ Z ∩ Ui ∩ Vj : (si)z = (tj)z.
For every open neighborhood U of Z, we have a restriction map ρUZ : F(U) →
F(Z), s 7→ s|Z := [(U, s)]

Remark. (i) The restriction of F to a subspace Z is usually defined as F(Z) =
(ι−1F)(Z), using the inverse image sheaf of the inclusion ι : Z → X. Since we did
not cover this in the seminar, I’m giving an explicit description instead.

(ii) If Z ⊆ X is open, this gives us the usual F(Z).

(iii) For the case Z = {x}, this just gives us the stalk Fx.

Definition 3.9. A sheaf F on a topological space X is called soft if for every closed
Z ⊆ X, the restriction map F(X)→ F(Z) is surjective.

Remark. Let X be a topological space, Z ⊆ X closed and F a soft sheaf on X. Then
F|Z is a soft sheaf on Z: If A ⊆ Z is closed, then it is also closed in X. Therefore
the composition of restrictions F(X)→ F(Z)→ F(A) is surjective and hence F(Z)→
F(A) is surjective.

Proposition 3.10. Assume that X is a paracompact Hausdorff space, Z ⊆ X closed
and F a sheaf on X. Then the restriction maps ρUZ induce an isomorphism

colim
Z⊆U

F(U) = {(U, s) |U ⊆ X open with Z ⊆ U, s ∈ F(U)}/∼ ∼= F(Z)

where in the middle term (U, s) ∼ (V, t)⇔ there exists Z ⊆ W ⊆ U ∩ V open such that
s|W = t|W .

Proof. Uses some topological results. See [Wed16], Proposition 9.1.

Example 3.11. (i) Let X be a paracompact Hausdorff space and let CX be the sheaf
of continuous R-valued functions on X. Then CX is soft. (It is however, in general,
not flabby: Let X = R with the standard topology. The continuous function
s : (0,∞)→ R, x 7→ 1

x
can not be extended to R).
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Proof. To show this, let Z ⊆ X closed and s ∈ CX(Z). Note that in general, CX(Z) 6=
CZ(Z), so we cannot directly apply Theorem 3.3 (iv)! Instead, we use Proposition 3.10
to get an open neighborhood Z ⊆ U ⊆ X and t ∈ CX(U) that extends s. We can then
use Theorem 3.3 (iii) to find an open neighborhood Z ⊆ V such that V ⊆ U . Then Z
and X \ V are disjoint closed subsets of X and by Theorem 3.3 (i) we get a continuous
function f : X → [0, 1] with f |Z = 1 and fX\V = 0.

Thus f |U t also extends s (i. e. (f |U t)|Z = tZ = sZ) and can be extended to X by
zero.

(ii) It can be shown in a similar way that for X a real Cα-manifold, α ∈ N ∪∞, the
sheaf of real valued Cα-functions on X is soft. The proof relies on the fact that
every point in X has a compact neighborhood that corresponds to a compact set
K ∈ Rm via a chart. We can then use the fact that for all U ∈ Rm open and K ∈ U
compact, there exists a C∞-function φ : Rm → [0, 1] with φ|K = 1, suppφ ⊆ U to
extend functions by zero.

(iii) We cannot use the same trick for holomorphic functions on complex manifolds:
The set of zeros of a holomorphic function is discrete, so if we extend a holomor-
phic function by zero on the complement of a compact set, the result can not be
holomorphic.

(iv) Now, for example the sheaf of holomorphic functions O on C is not soft, as we
can easily see: Let Z ⊆ C closed such that Z ⊆ C− := C \ {x ∈ R |x ≤ 0},
and take the element s ∈ O(Z) represented by the complex logarithm ln. Due to
the identity theorem, there are no other representatives and there is no globally
holomorphic function on C that extends ln. (Another example: z 7→

∑∞
n=0 z

n on
Z ⊆ {z ∈ C|z| < 1

2
}).

(v) Constant sheaves are in general not soft. Take for example Z on X = C with the
Zariski topology. We saw before that this was flabby. But it is not soft, as the
section s ∈ Z({0, 1}) with s0 = 0, s1 = 1 can not be extended to the whole space.
(Remember that we must use Definition 3.8 here, not Proposition 3.10, to find that
s).

Example 3.12. Let X be a paracompact Hausdorff space. Then every flabby sheaf F
on X is soft.

Proof. Let Z ⊆ X be closed, and s ∈ F(Z). By Proposition 3.10 there exists an open
neighborhood U of Z and t ∈ F(U) extending s. Since F is flabby, we can extend t to
X.

Proposition 3.13. Let (X,OX) be a ringed space with X paracompact Hausdorff and
OX soft. Then every OX-module F is soft.

Proof. Let Z ⊆ X be closed and s ∈ F(Z). By Proposition 3.10 there exists an open
neighborhood U of Z and t ∈ F(U) extending s. X is normal, and so we can use
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Theorem 3.3 (iii) to find an open neighborhood Z ⊆ V such that V ⊆ U . Then Z and
∂V are disjoint closed subsets of X. Because OX is soft, OX(X) → OX(Z ∪ ∂V ) is
surjective and we can find u ∈ OX(X) such that for all x ∈ Z we have ux = 1 and for
x ∈ ∂V we have ux = 0. Thus u|V t|V ∈ F(V ) extends s and can be extended to an
element of F(X) by zero.

Theorem 3.14. Let (X,OX) be a ringed space with X paracompact Hausdorff. Then
every soft OX-module is Γ-acyclic.

Proof. Again, we want to use Lemma 1.4 to proof this. Examples 2.5 and 3.12 show that
every injective OX-module is flabby and thus soft, so it remains to show that the second

condition of the Lemma is fulfilled. So let 0 → F ′ α−→ F β−→ F ′′ → 0 be a short exact
sequence ofOX-modules with F ′,F soft. As in the proof of Lemma 2.6, we consider F ′ as
a subsheaf of F , more specifically as ker β. To show surjectivity of βX : F(X)→ F ′′(X),
let s ∈ F ′′(X). We know that for all x ∈ X, βx : Fx → F ′′x is surjective, that means β
is surjective “near” any x. So we can find an open covering (Ui)i∈I of X such that for
all i ∈ I, there is a section si ∈ F(Ui) with βUi

(si) = s|Ui
. Because X is paracompact,

we can assume (Ui)i∈I is locally finite. We use the Shrinking Lemma 3.5 to find another
open covering (Vi)i∈I such that for all i ∈ I the closure Si := Vi is contained in Ui. For
J ⊆ I set SJ :=

⋃
i∈J Si. Note that this is closed, because (Si)i∈I is locally finite.

We define the set

C := {(J, t) | J ⊆ I, t ∈ F(SJ) s. t. βSJ
(t|SJ

) = s|SJ
},

C is nonempty, because (∅, ∗) ∈ C. We can order C by (J, t) ≤ (J ′, t′) ⇔ J ⊆
J ′ and t′|SJ

= t. Then it is inductively ordered by this relation, i. e. every chain has an
upper bound given by the union of the sets and the glued-together sections. We apply
Zorn’s Lemma to get a maximal element of C, say (J, t). We now proof that J = I, then
t is a preimage of s on SI = X.

Suppose there exists i ∈ I \ J . Then we have si|Si
∈ F(Si) that gets mapped to

s|Si
under β. Now, since both t and si get mapped to S on SJ ∩ Si, we get t|SJ∩Si

−
si|SJ∩Si

∈ ker β(SJ ∩ Si) = F ′(SJ ∩ Si). Since F ′ is soft, we can extend this to some
t′ ∈ F ′(Si) ⊆ F(Si). Then, t and t′ agree on SJ ∩ Si and can be glued together to a
section in F(SJ ∩ Si) that extends t and gets mapped to s|SJ∩Si

under β, contradicting
the maximality of J .

Now to show that F ′′ is soft, let Z ⊆ X be closed. We can apply what we’ve just
shown to F ′|Z ,F|Z and F ′′|Z , because the first two are again soft. Then it is obvious
from the diagram that the right vertical arrow must be surjective.

F(X) F ′′(X)

F(Z) F ′′(Z)

11



Theorem 3.15. Let X be a paracompact Hausdorff Space and F a sheaf of abelian
groups on X. Then F is soft iff for every closed subspace Z ⊆ X, every s ∈ F(Z)
and every open covering (Ui)i∈I of Z in X, for all i ∈ I there exists si ∈ F(X) with
supp(si) ⊆ Ui and for all x ∈ Z we have sx =

∑
i∈I(si)x.

Suppose that F is a sheaf of rings. Then it is soft iff the condition holds for Z = X
and s = 1, i. e. we have partitions of unity.

Proof. The direction⇒ can be seen in [Wed16], Proposition 9.9. The rest is omitted.

3.3 Fine Sheaves

Definition 3.16 (Sheaf of homomorphisms of OX-modules). Let (X,OX) be a ringed
space and let F ,G be two OX-modules. The presheaf

U 7→ HomOX |U (F|U ,G|U)

with the obvious restriction maps is a sheaf. The right hand side is a OX(U)-module.
Therefore this sheaf has the structure of an OX-module and we will denote it by
HomOX

(F ,G).

Definition 3.17. Let (X,OX) be a ringed space and let F be an OX-module. F is said
to be fine if HomOX

(F ,F) is soft.

Proposition 3.18. Let (X,OX) be a ringed space with X paracompact Hausdorff and
OX soft. Then every OX-module F is fine.

Proof. HomOX
(F ,F) is an OX-module, and as such it is soft by Proposition 3.13.

Remark. If we view OX as a module over itself, the notions soft and fine are equivalent.

Remark. Using Theorem 3.15 and Proposition 3.18, we see that a sheaf on a paracom-
pact Hausdorff space that is fine by [Voi02], Def. 4.35 is also fine by our Definition.

Proposition 3.19. Let (X,OX) be a ringed space with X paracompact Hausdorff and
let F be a fine OX-module. Then it is soft, and by consequence Γ-acyclic.

Proof. We can view F as a module over the soft sheaf of rings HomOX
(F ,F), using the

evaluation as scalar multiplication. Then it is soft by Proposition 3.13.
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4 Conclusion

For the general case of X any topological space and F an abelian sheaf on X, we saw
the following implications:

F injective F flabby F acyclic

Because we have functorial flabby resolutions using the Godement-construction, we can
view sheaf cohomology as a functor.

We then added some more structure, namely looking at ringed spaces (X,OX) with
X paracompact Hausdorff. Then we additionally have for an OX-module F :

F injective F flabby

F soft F acyclic

F fine
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