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1 Sheaf Cohomology and Acyclic
resolutions

Let R be a ring and (X, Ox) a ringed space over R.

Definition 1.1. For an Ox-Module F, we defined the cohomology of F as the right
derivation of the left exact functor I'(X,—) : Ox-Mod — R-Mod, F — I'(X,F) =
F(X): For n € Ng

H"(X,F)=R'T(X,F).

Remark. This also defines the cohomolgy of a sheaf F of abelian groups on X, because
F can be regarded as a Z-module, Z being the constant Z-valued sheaf on X.

For the theoretic construction, injective resolutions were used, but we learned that we
can use a greater class of objects to resolve F for easier computation.

Definition 1.2. Let A, B be abelian categories, A with enough injectives, F' : A — B
a covariant left exact functor. We call I € A F-acyclic iff for all n > 0 we have

R"F(I) = 0.
Let A be any object in A. An acyclic resolution of A is an exact sequence 0 — A —
I — I* — ..., where for all n > 0, I" is F-acyclic.

Theorem 1.3. Let 0 — A — I* be an F-acyclic resolutions of A, then there is a natural
isomorphism R"F(A) = H"(F(Z°*)).

We applied this to the section functor I' and defined (I'-)acyclic Ox-modules. In this
talk, we will look at different examples of acyclic sheaves and Ox-modules.
A useful criterion to find classes of acyclic objects is the following:

Lemma 1.4. Let A,B,F : A — B as above. Let T C Ob A be a subset such that the
following conditions are satisfied:

(i) If I is an injective object of A, then I € T.

(i) Let 0 — X' — X — X" — 0 be a short exact sequence in A with X', X € Z. Then
X"isinZ and F(X) — F(X") is surjective.

Then every object in L is F-acyclic.



Proof. Let A € Z. Since A has enough injectives, we get an injective resolution

0 AL pnd

By , IV is in Z and so we can apply to the short exact sequence
0 d . 0
0—-A—I"—im(d)—0.

This shows that im(d°) € Z and that

0 = F(A) = FI°) 2% Pim(d®) - 0

is exact, i. e. F(im(d®)) = im(F(d?)).

This was the base case for our induction. Now let n > 0 and assume that im(d"~') € Z
and F(im(d" ') = im(F(d"1)).

I™ € T because of , so we can apply to the s.e.s.

0 — im(d") = ker(d") — I" L im(d™) — 0.

This means that also im(d") € Z and gives us exactness of the sequence

0 — F(im(d™") — FI") 2% Pim(d™) — 0.

Hereby we can conclude that
im(F(d"1)) = F(im(d"™")) = ker(F(d"))

ker(F'(d"))

m(F@=) i

and hence R"F'(A) =



2 Flabby Sheaves and Resolutions

In this chapter, let X be a topological space.

Definition 2.1. We call a sheaf F on X flabby (sometimes also by the french word
flasque), if for every open subset U C X the restriction map pxy : F(X) — F(U) is
surjective.

Remark. Let F be a flabby sheaf on X and U C X open. Then F|y is a flabby sheaf on
U: It V C U is open, then it is also open in X. Therefore the composition of restrictions
F(X)— FU) — F(V) is surjective and hence F(U) — F(V) is surjective.

The following example shows that flabby really means “functions can be extended”.

Example 2.2. The sheaf of locally constant Z-valued functions Z on X is flabby if and
only if X is irreducible (i. e. if any two nonempty open sets have nonempty intersection,
also called hyperconnected), because in this case locally constant functions on a nonempty
open subset U C X are already constant and Z(U) = Z. An example for an irreducible
space is C with the Zariski topology, which is just the cofinite topology, where the closed
sets are exactly the finite ones. On the other hand, Z on C with the standard topology
is not flabby, because we can find two nonempty disjoint subsets, e. g. U = Bj(—2)
and V' = B;(2). Then the function f € Z(U UV) with f|y = 0 and f|y = 1 can not be
extended to a locally constant function on C.

We will now see an easy, canonical, and functorial way to construct flabby resolutions
for any sheaf or Ox-module. Later, we will see that this is in fact an acyclic resolution,
allowing us to compute cohomology.

Definition 2.3 (Godement-Functor). Let F be a sheaf on X. We define the sheaf Fgoq
as follows: For every open subset U C X, we set

FeoaU) =[] 7o

zeU

with the obvious restriction maps. Note that in this case, they are actually restrictions,
because an element s € Fgoq(U) can be explicitly regarded as a function U — ], . Fa,
which we can restrict to V. With this in mind, it is easy to see that Fgoq is indeed a
sheaf and flabby.

Furthermore, there is an injective morphism of sheaves v : F — Fgoq, that for every
U C X open maps s € F(U) to (Sz)zev € Faoa(U).

Given a morphism ¢ : F — G of sheaves, we define ¢goq : Faoda — YGaoa With
bcodv = [ [,ep o~ This is a morphism of sheaves.



Hereby we obtain a functor —g.q from the category of sheaves to the full subcategory
of flabby sheaves. The morphism ¢ is functorial in F.

If (X,Oyx) is a ringed space and the sheaf F that we started with is an Ox-module,
Fcoa is as well: Addition is defined pointwise in the stalks, and scalar multiplication
of a € Ox(U) with (s;)zcv is defined as (a,;5:)rev € Faoa(U). Hence we get a functor
—God from the category of Ox-modules to the full subcategory of flabby Ox-modules.
Here, 17 is a functorial homomorphism of Ox-modules.

Definition 2.4 (Godement-Resolution). Let F be an Ox-module. Using the above
construction, we set F° := Fgoq and get a functorial exact sequence of Ox-modules

O—)]—"Ei)]:ﬂ—)coker@;) —0

Now (coker(tz))coa =: F* is a good candidate to continue our resolution, as we already
know it is flabby. Inductively, we define for n > 0:

o Ftl = (coker(d,_1))cod

e The morphism 6, : F* — F"*! is defined as the composition F™ — coker(d,_1) —
(coker(d,-1))coa- Because the second arrow is injective, we get the exactness of
the resulting flabby resolution

1) é 1
0 F % F0 0oy g1 By g2 oy

Remark. In general, derived functors depend on the choice of injective resolution and
thus are only well-defined up to natural isomorphism. For the special case of sheaf

cohomology though, we now have a canonical and functorial way to compute it, so every
H"(X,—) is a well-defined functor.

Example 2.5. If (X,Ox) is a ringed space and Z an injective Ox-module, then Z is
flabby.

Proof. By Definition [2.3] there is a flabby Ox-module Zgoq and an injective homomor-
phism 7 — Zg.q. Because 7 is injective, it is thus a direct summand of Zg,q and hence
flabby itself. (This works because a finite direct sum is a direct product, so for every

U C X we can write Zgoq(U) = Z(U) & Z'(U) without sheafifying). O

&7

Lemma 2.6. Let 0 — F' % F % F" 5 0 be a short exact sequence of sheaves with
F', F flabby. Then Bx : F'(X) — F"(X) is surjective and F" is flabby.

Proof. We can consider F' as a subsheaf of F, more specifically as ker 5. Now let
s € F"(X). We define the set

C:={(Ut)|U C X open,t € F(U) s. t. Bu(tlv) = slv},

i. e. we look at subsets of X where we can find a preimage for s. Our goal is to find
some t € F(X) such that (X,t) € C.



C is nonempty, because (0,*) € C. We can order C by (U,t) < (U',t') & U C
U’ and t'|y = t. Then it is inductively ordered by this relation, i. e. every chain has an
upper bound given by the union of the sets and the glued-together sections. We apply
Zorn’s Lemma to get a maximal element of C, say (V,t). We now proof that V = X.

Suppose there exists x € X \ V. Then there is a neighborhood W of z and t' € F(W)
such that (W,t') € C (because we know 3, : F, — F. is surjective, that means [ is

xr
surjective “near” x). Now, since both ¢ and ' get mapped to s on V N W, we get

thvaw — tlvew € ker (VN W) = F(VNW). Since F' is flabby, we can extend this
to some t" € F'(W) C F(W). Then, t and ¢’ 4+ t” agree on V N W and can be glued
together to a section in F(V U W) that extends ¢ and gets mapped to s|yuw under §,
contradicting the maximality of V.

Now to show that F” is flabby, we can use what we’ve just shown. For U C X open,
we get surjectivity of By : F'(U) — F"(U) by applying the same proof as above to
F'lu, Flu, F'|v, since F'|y and F|y are obviously also flabby. Then it is obvious from
the diagram that the right vertical arrow must also be surjective.

F(X) — F'(X)

F(U) — F'(U)

O
Corollary 2.7. All flabby sheaves (of abelian groups) are I'-acyclic.
Proof. This follows from Lemma[1.4] Example 2.5 and Lemma [2.6 O



3 Soft and Fine Sheaves

3.1 Topological Preliminaries

Definition 3.1. A topological space X is called paracompact if every open covering of
X has an open refinement that is locally finite.

Remark. Every closed subspace of a paracompact space is paracompact.

Definition 3.2. A topological space X is called Hausdorff space if for every two points
x,y € X,z # y there exist open neighbourhoods x € U and y € V such that UNV = ().

Theorem 3.3 (Tietze Extension Theorem). Let X be a topological space. Then the
following properties are equivalent:

(i) For any two closed subsets A, B C X with AN B = (), there exists a continuous
function f : X — [0, 1] such that f(a) =0 for alla € A and f(b) =1 for allb € B.

(it) For any two closed subsets A, B C X with AN B =), there exist open disjoint sets
U and V' such that A CU and BCV.

(i1i) For every closed subset A and every neighborhood W of A there exists an open
netghborhood U of A such that ACU CU CW.

(iv) For every closed subspace A C X and continuous map f : A — R there erists a
continuous function f: X — R such that f|a = f.

Definition 3.4. A topological space X that satisfies the above properties is called
normal.

Lemma 3.5 (Shrinking Lemma). Let X be a normal topological space and let (U;);cr be
a locally finite open covering. Then there exists another open covering (V;);er such that
foralli € I, V; CV, CU, i e. we can shrink the original sets to get a locally finite
covering by closed sets.

Remark. This assumes the Axiom of Choice.
Proposition 3.6. Every paracompact Hausdorff space is normal.

Example 3.7. Differential manifolds over R, C are paracompact Hausdorff.



3.2 Soft Sheaves

Definition 3.8. Let X be a topological space and F a sheaf on X. For a subspace
Z C X, we define

U; C X open with Z C UUi7

i€l

F(2)i= { (5 U

S; € F(UZ) s.t. Vi,i/ S ],Z ezZnN Ul N Ui’ . (Sz)z = (Si’)z}/N

with (Si7Ui)i€I ~ (tj,‘/})jej < Vie I,] € J,Z e ZNU;N ‘/J : (Si)z = (tj)z'
For every open neighborhood U of Z, we have a restriction map p¥ : F(U) —
F(Z),s = sz :=[(U,s)]

Remark. (i) The restriction of F to a subspace Z is usually defined as F(Z) =
(.71 F)(Z), using the inverse image sheaf of the inclusion ¢ : Z — X. Since we did
not cover this in the seminar, I'm giving an explicit description instead.

(ii) If Z C X is open, this gives us the usual F(Z).
(iii) For the case Z = {x}, this just gives us the stalk F,.

Definition 3.9. A sheaf F on a topological space X is called soft if for every closed
Z C X, the restriction map F(X) — F(Z) is surjective.

Remark. Let X be a topological space, Z C X closed and F a soft sheaf on X. Then
F|z is a soft sheaf on Z: If A C Z is closed, then it is also closed in X. Therefore
the composition of restrictions F(X) — F(Z) — F(A) is surjective and hence F(Z) —
F(A) is surjective.

Proposition 3.10. Assume that X is a paracompact Hausdorff space, Z C X closed
and F a sheaf on X. Then the restriction maps p5 induce an isomorphism

cglcilrjn]:(U) ={(U,s)|U C X open with Z CU,s € F(U)}/. = F(Z)
where in the middle term (U, s) ~ (V,t) < there exists Z C W C U NV open such that
S|W = t|w.

Proof. Uses some topological results. See [Wed16|, Proposition 9.1. O]

Example 3.11. (i) Let X be a paracompact Hausdorff space and let Cx be the sheaf
of continuous R-valued functions on X. Then Cy is soft. (It is however, in general,
not flabby: Let X = R with the standard topology. The continuous function
s:(0,00) = R,z + < can not be extended to R).



Proof. To show this, let Z C X closed and s € Cx(Z). Note that in general, Cx(Z) #
Cz(Z), so we cannot directly apply Theorem (iv)! Instead, we use Proposition [3.10]
to get an open neighborhood Z C U C X and t € Cx(U) that extends s. We can then
use Theorem to find an open neighborhood Z C V such that V C U. Then Z
and X \ V are disjoint closed subsets of X and by Theorem we get a continuous
function f: X — [0,1] with f|; =1 and fx\v = 0.

Thus f|yt also extends s (i. e. (f|yt)|z = tz = sz) and can be extended to X by
Z€ro. [

(ii) It can be shown in a similar way that for X a real C*-manifold, & € N U oo, the
sheaf of real valued C*-functions on X is soft. The proof relies on the fact that
every point in X has a compact neighborhood that corresponds to a compact set
K € R™ via a chart. We can then use the fact that for all U € R™ open and K € U
compact, there exists a C*°-function ¢ : R™ — [0, 1] with ¢|x = 1, supp¢ C U to
extend functions by zero.

(iii) We cannot use the same trick for holomorphic functions on complex manifolds:
The set of zeros of a holomorphic function is discrete, so if we extend a holomor-
phic function by zero on the complement of a compact set, the result can not be
holomorphic.

(iv) Now, for example the sheaf of holomorphic functions O on C is not soft, as we
can easily see: Let Z C C closed such that Z C C~ := C\ {z € R|z < 0},
and take the element s € O(Z) represented by the complex logarithm In. Due to
the identity theorem, there are no other representatives and there is no globally
holomorphic function on C that extends In. (Another example: z — >~ 2" on
Z C{zeClz| < 3}).

(v) Constant sheaves are in general not soft. Take for example Z on X = C with the
Zariski topology. We saw before that this was flabby. But it is not soft, as the
section s € Z({0,1}) with so = 0,s; = 1 can not be extended to the whole space.
(Remember that we must use Definition here, not Proposition , to find that

s).

Example 3.12. Let X be a paracompact Hausdorff space. Then every flabby sheaf F
on X is soft.

Proof. Let Z C X be closed, and s € F(Z). By Proposition there exists an open
neighborhood U of Z and t € F(U) extending s. Since F is flabby, we can extend ¢ to
X. ]

Proposition 3.13. Let (X, Ox) be a ringed space with X paracompact Hausdorff and
Ox soft. Then every Ox-module F is soft.

Proof. Let Z C X be closed and s € F(Z). By Proposition there exists an open
neighborhood U of Z and t € F(U) extending s. X is normal, and so we can use
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Theorem to find an open neighborhood Z C V such that V CU. Then Z and
JV are disjoint closed subsets of X. Because Oy is soft, Ox(X) — Ox(Z U V) is
surjective and we can find u € Ox(X) such that for all z € Z we have u, = 1 and for

x € 0V we have u, = 0. Thus ulyt|yy € F(V) extends s and can be extended to an
element of F(X) by zero. O

Theorem 3.14. Let (X,Ox) be a ringed space with X paracompact Hausdorff. Then
every soft Ox-module is I'-acyclic.

Proof. Again, we want to use Lemmal[l.4]to proof this. Examples[2.5]and show that
every injective O y-module is flabby and thus soft, so it remains to show that the second

condition of the Lemma is fulfilled. So let 0 — F' % F 2 77 5 0 be a short exact
sequence of Ox-modules with 7/, F soft. As in the proof of Lemmal[2.6] we consider F' as
a subsheaf of F, more specifically as ker 5. To show surjectivity of 5x : F(X) — F"(X),
let s € F'(X). We know that for all x € X, 3, : F, — F/ is surjective, that means [
is surjective “near” any x. So we can find an open covering (U;);c; of X such that for
all i € I, there is a section s; € F(U;) with Sy, (s;) = s|y,. Because X is paracompact,
we can assume (U;);e; is locally finite. We use the Shrinking Lemma to find another
open covering (V;)ser such that for all i € I the closure S; := Vj is contained in U;. For
J € Iset Sy:=J,c;Si- Note that this is closed, because (5;);es is locally finite.

We define the set
C .= {(J,t) | J C ],t € .F(SJ) s. t. /ng(ﬂsj) = 3|S(,},

C is nonempty, because (),*) € C. We can order C by (J,t) < (J,t') & J C
J' and t'|s, = t. Then it is inductively ordered by this relation, i. e. every chain has an
upper bound given by the union of the sets and the glued-together sections. We apply
Zorn’s Lemma to get a maximal element of C, say (J,t). We now proof that J = I, then
t is a preimage of s on S; = X.

Suppose there exists ¢ € I\ J. Then we have s;|s, € F(S;) that gets mapped to
s|ls, under 8. Now, since both ¢ and s; get mapped to S on S; N S;, we get t|s,ns, —
Sils,ns; € ker 5(S;NS;) = F'(S;NS;). Since F is soft, we can extend this to some
t'" € F'(S;) € F(S;). Then, t and ' agree on S; N S; and can be glued together to a
section in F(S; N .S;) that extends ¢ and gets mapped to s|s,ns, under g, contradicting
the maximality of J.

Now to show that F” is soft, let Z C X be closed. We can apply what we’ve just
shown to F'|z, F|Z and F”|z, because the first two are again soft. Then it is obvious
from the diagram that the right vertical arrow must be surjective.

F(X) — F'(X)

| |

F(Z2) —» F'(2)

11



Theorem 3.15. Let X be a paracompact Hausdorff Space and F a sheaf of abelian
groups on X. Then F is soft iff for every closed subspace Z C X, every s € F(Z)
and every open covering (U;)icr of Z in X, for all i € I there exists s; € F(X) with
supp(s;) C U; and for all x € Z we have sy = ./ (5i)a-

Suppose that F is a sheaf of rings. Then it is soft iff the condition holds for Z = X
and s =1, i. e. we have partitions of unity.

Proof. The direction = can be seen in [Wed16|, Proposition 9.9. The rest is omitted. [

3.3 Fine Sheaves

Definition 3.16 (Sheaf of homomorphisms of Ox-modules). Let (X, Ox) be a ringed
space and let F,G be two Ox-modules. The presheaf

U— HOID@X‘U(;'|U, Q|U)

with the obvious restriction maps is a sheaf. The right hand side is a Ox(U)-module.
Therefore this sheaf has the structure of an Ox-module and we will denote it by

HOm@X (.F, Q)

Definition 3.17. Let (X, Ox) be a ringed space and let F be an Ox-module. F is said
to be fine if Homo, (F,F) is soft.

Proposition 3.18. Let (X, Ox) be a ringed space with X paracompact Hausdorff and
Ox soft. Then every Ox-module F is fine.

Proof. Homo, (F,F) is an Ox-module, and as such it is soft by Proposition O
Remark. If we view Oy as a module over itself, the notions soft and fine are equivalent.

Remark. Using Theorem and Proposition we see that a sheaf on a paracom-
pact Hausdorff space that is fine by [Voi02], Def. 4.35 is also fine by our Definition.

Proposition 3.19. Let (X, Ox) be a ringed space with X paracompact Hausdorff and
let F be a fine Ox-module. Then it is soft, and by consequence I"-acyclic.

Proof. We can view F as a module over the soft sheaf of rings Home, (F, F), using the
evaluation as scalar multiplication. Then it is soft by Proposition [3.13] O
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4 Conclusion

For the general case of X any topological space and F an abelian sheaf on X, we saw
the following implications:

F injective =—= F flabby =—= F acyclic

Because we have functorial flabby resolutions using the Godement-construction, we can
view sheaf cohomology as a functor.

We then added some more structure, namely looking at ringed spaces (X, Ox) with
X paracompact Hausdorff. Then we additionally have for an Ox-module F:

F injective == F flabby

~

F soft —= F acyclic

~

F fine

13
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