Seminar: Sheaf Theory

Fine, soft and flabby sheaves

Theresa Eva Marie Häberle

January 18, 2023

Contents

1	Sheaf Cohomology and Acyclic resolutions	3
2	Flabby Sheaves and Resolutions	5
3	Soft and Fine Sheaves	8
	3.1 Topological Preliminaries	8
	3.2 Soft Sheaves	9
	3.3 Fine Sheaves	12
4	Conclusion	13

1 Sheaf Cohomology and Acyclic resolutions

Let R be a ring and (X, \mathcal{O}_X) a ringed space over R.

Definition 1.1. For an \mathcal{O}_X -Module \mathcal{F} , we defined the *cohomology* of \mathcal{F} as the right derivation of the left exact functor $\Gamma(X, -) : \mathcal{O}_X$ -Mod $\to R$ -Mod, $\mathcal{F} \mapsto \Gamma(X, \mathcal{F}) = \mathcal{F}(X)$: For $n \in \mathbb{N}_0$

$$H^n(X,\mathcal{F}) = R^n \Gamma(X,\mathcal{F}).$$

Remark. This also defines the cohomolgy of a sheaf \mathcal{F} of abelian groups on X, because \mathcal{F} can be regarded as a $\underline{\mathbb{Z}}$ -module, $\underline{\mathbb{Z}}$ being the constant \mathbb{Z} -valued sheaf on X.

For the theoretic construction, injective resolutions were used, but we learned that we can use a greater class of objects to resolve \mathcal{F} for easier computation.

Definition 1.2. Let \mathcal{A}, \mathcal{B} be abelian categories, \mathcal{A} with enough injectives, $F : \mathcal{A} \to \mathcal{B}$ a covariant left exact functor. We call $I \in \mathcal{A}$ *F*-acyclic iff for all n > 0 we have $R^n F(I) = 0$.

Let A be any object in \mathcal{A} . An *acyclic resolution* of A is an exact sequence $0 \to A \to I^0 \to I^1 \to \ldots$, where for all $n \ge 0$, I^n is F-acyclic.

Theorem 1.3. Let $0 \to A \to I^{\bullet}$ be an *F*-acyclic resolutions of *A*, then there is a natural isomorphism $\mathbb{R}^n F(A) \cong H^n(F(\mathcal{I}^{\bullet}))$.

We applied this to the section functor Γ and defined (Γ -)acyclic \mathcal{O}_X -modules. In this talk, we will look at different examples of acyclic sheaves and \mathcal{O}_X -modules.

A useful criterion to find classes of acyclic objects is the following:

Lemma 1.4. Let $\mathcal{A}, \mathcal{B}, F : \mathcal{A} \to \mathcal{B}$ as above. Let $\mathcal{I} \subset \text{Ob }\mathcal{A}$ be a subset such that the following conditions are satisfied:

- (i) If I is an injective object of \mathcal{A} , then $I \in \mathcal{I}$.
- (ii) Let $0 \to X' \to X \to X'' \to 0$ be a short exact sequence in \mathcal{A} with $X', X \in \mathcal{I}$. Then X'' is in \mathcal{I} and $F(X) \to F(X'')$ is surjective.

Then every object in \mathcal{I} is F-acyclic.

Proof. Let $A \in \mathcal{I}$. Since \mathcal{A} has enough injectives, we get an injective resolution

$$0 \to A \to I^0 \xrightarrow{d^0} I^1 \xrightarrow{d^1} \dots$$

By (i), I^0 is in \mathcal{I} and so we can apply (ii) to the short exact sequence

$$0 \to A \to I^0 \xrightarrow{d^0} \operatorname{im}(d^0) \to 0.$$

This shows that $\operatorname{im}(d^0) \in \mathcal{I}$ and that

$$0 \to F(A) \to F(I^0) \xrightarrow{F(d^0)} F(\operatorname{im}(d^0)) \to 0$$

is exact, i. e. $F(im(d^0)) = im(F(d^0)).$

This was the base case for our induction. Now let n > 0 and assume that $\operatorname{im}(d^{n-1}) \in \mathcal{I}$ and $F(\operatorname{im}(d^{n-1})) = \operatorname{im}(F(d^{n-1})).$

 $I^n \in \mathcal{I}$ because of (i), so we can apply (ii) to the s.e.s.

$$0 \to \operatorname{im}(d^{n-1}) = \ker(d^n) \to I^n \xrightarrow{d^n} \operatorname{im}(d^n) \to 0.$$

This means that also $\operatorname{im}(d^n) \in \mathcal{I}$ and gives us exactness of the sequence

$$0 \to F(\operatorname{im}(d^{n-1})) \to F(I^n) \xrightarrow{F(d^n)} F(\operatorname{im}(d^n)) \to 0.$$

Hereby we can conclude that

$$\operatorname{im}(F(d^{n-1})) = F(\operatorname{im}(d^{n-1})) = \ker(F(d^n))$$

and hence $R^n F(A) = \frac{\ker(F(d^n))}{\operatorname{im}(F(d^{n-1}))} = 0.$

2 Flabby Sheaves and Resolutions

In this chapter, let X be a topological space.

Definition 2.1. We call a sheaf \mathcal{F} on X flabby (sometimes also by the french word flasque), if for every open subset $U \subseteq X$ the restriction map $\rho_{XU} : \mathcal{F}(X) \to \mathcal{F}(U)$ is surjective.

Remark. Let \mathcal{F} be a flabby sheaf on X and $U \subseteq X$ open. Then $\mathcal{F}|_U$ is a flabby sheaf on U: If $V \subseteq U$ is open, then it is also open in X. Therefore the composition of restrictions $\mathcal{F}(X) \to \mathcal{F}(U) \to \mathcal{F}(V)$ is surjective and hence $\mathcal{F}(U) \to \mathcal{F}(V)$ is surjective.

The following example shows that flabby really means "functions can be extended".

Example 2.2. The sheaf of locally constant \mathbb{Z} -valued functions $\underline{\mathbb{Z}}$ on X is flabby if and only if X is *irreducible* (i. e. if any two nonempty open sets have nonempty intersection, also called *hyperconnected*), because in this case locally constant functions on a nonempty open subset $U \subseteq X$ are already constant and $\underline{\mathbb{Z}}(U) \cong \mathbb{Z}$. An example for an irreducible space is \mathbb{C} with the Zariski topology, which is just the cofinite topology, where the closed sets are exactly the finite ones. On the other hand, $\underline{\mathbb{Z}}$ on \mathbb{C} with the standard topology is not flabby, because we can find two nonempty disjoint subsets, e. g. $U = B_1(-2)$ and $V = B_1(2)$. Then the function $f \in \underline{\mathbb{Z}}(U \cup V)$ with $f|_U = 0$ and $f|_V = 1$ can not be extended to a locally constant function on \mathbb{C} .

We will now see an easy, canonical, and *functorial* way to construct flabby resolutions for any sheaf or \mathcal{O}_X -module. Later, we will see that this is in fact an acyclic resolution, allowing us to compute cohomology.

Definition 2.3 (Godement-Functor). Let \mathcal{F} be a sheaf on X. We define the sheaf \mathcal{F}_{God} as follows: For every open subset $U \subseteq X$, we set

$$\mathcal{F}_{\text{God}}(U) = \prod_{x \in U} \mathcal{F}_x$$

with the obvious restriction maps. Note that in this case, they are actually restrictions, because an element $s \in F_{\text{God}}(U)$ can be explicitly regarded as a function $U \to \coprod_{x \in U} \mathcal{F}_x$, which we can restrict to V. With this in mind, it is easy to see that \mathcal{F}_{God} is indeed a sheaf and flabby.

Furthermore, there is an injective morphism of sheaves $\iota_{\mathcal{F}} : \mathcal{F} \to \mathcal{F}_{God}$, that for every $U \subseteq X$ open maps $s \in \mathcal{F}(U)$ to $(s_x)_{x \in U} \in \mathcal{F}_{God}(U)$.

Given a morphism $\phi : \mathcal{F} \to \mathcal{G}$ of sheaves, we define $\phi_{\text{God}} : \mathcal{F}_{\text{God}} \to \mathcal{G}_{\text{God}}$ with $\phi_{\text{God}\,U} = \prod_{x \in U} \phi_x$. This is a morphism of sheaves.

Hereby we obtain a functor $-_{\text{God}}$ from the category of sheaves to the full subcategory of flabby sheaves. The morphism $\iota_{\mathcal{F}}$ is functorial in \mathcal{F} .

If (X, \mathcal{O}_X) is a ringed space and the sheaf \mathcal{F} that we started with is an \mathcal{O}_X -module, \mathcal{F}_{God} is as well: Addition is defined pointwise in the stalks, and scalar multiplication of $a \in \mathcal{O}_X(U)$ with $(s_x)_{x \in U}$ is defined as $(a_x s_x)_{x \in U} \in \mathcal{F}_{God}(U)$. Hence we get a functor $-_{God}$ from the category of \mathcal{O}_X -modules to the full subcategory of flabby \mathcal{O}_X -modules. Here, $\iota_{\mathcal{F}}$ is a functorial homomorphism of \mathcal{O}_X -modules.

Definition 2.4 (Godement-Resolution). Let \mathcal{F} be an \mathcal{O}_X -module. Using the above construction, we set $\mathcal{F}^0 := \mathcal{F}_{God}$ and get a functorial exact sequence of \mathcal{O}_X -modules

$$0 \to \mathcal{F} \xrightarrow{\iota_{\mathcal{F}} = :\delta_{-1}} \mathcal{F}^0 \to \operatorname{coker}(\iota_{\mathcal{F}}) \to 0$$

Now $(coker(\iota_{\mathcal{F}}))_{God} =: \mathcal{F}^1$ is a good candidate to continue our resolution, as we already know it is flabby. Inductively, we define for n > 0:

- $\mathcal{F}^{n+1} := (\operatorname{coker}(\delta_{n-1}))_{\operatorname{God}}$
- The morphism $\delta_n : \mathcal{F}^n \to \mathcal{F}^{n+1}$ is defined as the composition $\mathcal{F}^n \to \operatorname{coker}(\delta_{n-1}) \to (\operatorname{coker}(\delta_{n-1}))_{\operatorname{God}}$. Because the second arrow is injective, we get the exactness of the resulting flabby resolution

$$0 \to \mathcal{F} \xrightarrow{\iota_{\mathcal{F}}} \mathcal{F}^0 \xrightarrow{\delta_0} \mathcal{F}^1 \xrightarrow{\delta_1} \mathcal{F}^2 \xrightarrow{\delta_2} \dots$$

Remark. In general, derived functors depend on the choice of injective resolution and thus are only well-defined up to natural isomorphism. For the special case of sheaf cohomology though, we now have a canonical and functorial way to compute it, so every $H^n(X, -)$ is a well-defined functor.

Example 2.5. If (X, \mathcal{O}_X) is a ringed space and \mathcal{I} an injective \mathcal{O}_X -module, then \mathcal{I} is flabby.

Proof. By Definition 2.3, there is a flabby \mathcal{O}_X -module \mathcal{I}_{God} and an injective homomorphism $\mathcal{I} \to \mathcal{I}_{\text{God}}$. Because \mathcal{I} is injective, it is thus a direct summand of \mathcal{I}_{God} and hence flabby itself. (This works because a *finite* direct sum is a direct product, so for every $U \subseteq X$ we can write $\mathcal{I}_{\text{God}}(U) = \mathcal{I}(U) \oplus \mathcal{I}'(U)$ without sheafifying). \Box

Lemma 2.6. Let $0 \to \mathcal{F}' \xrightarrow{\alpha} \mathcal{F} \xrightarrow{\beta} \mathcal{F}'' \to 0$ be a short exact sequence of sheaves with $\mathcal{F}', \mathcal{F}$ flabby. Then $\beta_X : \mathcal{F}'(X) \to \mathcal{F}''(X)$ is surjective and \mathcal{F}'' is flabby.

Proof. We can consider \mathcal{F}' as a subsheaf of \mathcal{F} , more specifically as ker β . Now let $s \in \mathcal{F}''(X)$. We define the set

$$\mathcal{C} := \{ (U, t) \mid U \subseteq X \text{ open}, t \in \mathcal{F}(U) \text{ s. t. } \beta_U(t|_U) = s|_U \},\$$

i. e. we look at subsets of X where we can find a preimage for s. Our goal is to find some $t \in \mathcal{F}(X)$ such that $(X, t) \in \mathcal{C}$.

 \mathcal{C} is nonempty, because $(\emptyset, *) \in \mathcal{C}$. We can order \mathcal{C} by $(U, t) \leq (U', t') \Leftrightarrow U \subseteq U'$ and $t'|_U = t$. Then it is inductively ordered by this relation, i. e. every chain has an upper bound given by the union of the sets and the glued-together sections. We apply *Zorn's Lemma* to get a maximal element of \mathcal{C} , say (V, t). We now proof that V = X.

Suppose there exists $x \in X \setminus V$. Then there is a neighborhood W of x and $t' \in \mathcal{F}(W)$ such that $(W, t') \in \mathcal{C}$ (because we know $\beta_x : \mathcal{F}_x \to \mathcal{F}''_x$ is surjective, that means β is surjective "near" x). Now, since both t and t' get mapped to s on $V \cap W$, we get $t|_{V \cap W} - t'|_{V \cap W} \in \ker \beta(V \cap W) = \mathcal{F}'(V \cap W)$. Since \mathcal{F}' is flabby, we can extend this to some $t'' \in \mathcal{F}'(W) \subseteq \mathcal{F}(W)$. Then, t and t' + t'' agree on $V \cap W$ and can be glued together to a section in $\mathcal{F}(V \cup W)$ that extends t and gets mapped to $s|_{V \cup W}$ under β , contradicting the maximality of V.

Now to show that \mathcal{F}'' is flabby, we can use what we've just shown. For $U \subseteq X$ open, we get surjectivity of $\beta_U : \mathcal{F}'(U) \to \mathcal{F}''(U)$ by applying the same proof as above to $\mathcal{F}'|_U, \mathcal{F}|_U, \mathcal{F}''|_U$, since $\mathcal{F}'|_U$ and $\mathcal{F}|_U$ are obviously also flabby. Then it is obvious from the diagram that the right vertical arrow must also be surjective.

$$\begin{array}{cccc} \mathcal{F}(X) & \longrightarrow & \mathcal{F}''(X) \\ & & & \downarrow \\ \mathcal{F}(U) & \longrightarrow & \mathcal{F}''(U) \end{array}$$

Corollary 2.7. All flabby sheaves (of abelian groups) are Γ -acyclic.

Proof. This follows from Lemma 1.4, Example 2.5 and Lemma 2.6.

3 Soft and Fine Sheaves

3.1 Topological Preliminaries

Definition 3.1. A topological space X is called *paracompact* if every open covering of X has an open refinement that is locally finite.

Remark. Every closed subspace of a paracompact space is paracompact.

Definition 3.2. A topological space X is called *Hausdorff space* if for every two points $x, y \in X, x \neq y$ there exist open neighbourhoods $x \in U$ and $y \in V$ such that $U \cap V = \emptyset$.

Theorem 3.3 (Tietze Extension Theorem). Let X be a topological space. Then the following properties are equivalent:

- (i) For any two closed subsets $A, B \subseteq X$ with $A \cap B = \emptyset$, there exists a continuous function $f: X \to [0, 1]$ such that f(a) = 0 for all $a \in A$ and f(b) = 1 for all $b \in B$.
- (ii) For any two closed subsets $A, B \subseteq X$ with $A \cap B = \emptyset$, there exist open disjoint sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (iii) For every closed subset A and every neighborhood W of A there exists an open neighborhood U of A such that $A \subseteq U \subseteq \overline{U} \subseteq W$.
- (iv) For every closed subspace $A \subseteq X$ and continuous map $f : A \to \mathbb{R}$ there exists a continuous function $\tilde{f} : X \to \mathbb{R}$ such that $\tilde{f}|_A = f$.

Definition 3.4. A topological space X that satisfies the above properties is called *normal*.

Lemma 3.5 (Shrinking Lemma). Let X be a normal topological space and let $(U_i)_{i \in I}$ be a locally finite open covering. Then there exists another open covering $(V_i)_{i \in I}$ such that for all $i \in I$, $V_i \subseteq \overline{V_i} \subseteq U_i$, i. e. we can shrink the original sets to get a locally finite covering by closed sets.

Remark. This assumes the Axiom of Choice.

Proposition 3.6. Every paracompact Hausdorff space is normal.

Example 3.7. Differential manifolds over \mathbb{R}, \mathbb{C} are paracompact Hausdorff.

3.2 Soft Sheaves

Definition 3.8. Let X be a topological space and \mathcal{F} a sheaf on X. For a subspace $Z \subseteq X$, we define

$$\mathcal{F}(Z) := \left\{ (s_i, U_i)_{i \in I} \middle| U_i \subseteq X \text{ open with } Z \subseteq \bigcup_{i \in I} U_i, \\ s_i \in \mathcal{F}(U_i) \text{ s.t. } \forall i, i' \in I, z \in Z \cap U_i \cap U_{i'} : (s_i)_z = (s_{i'})_z \right\} /_{\sim}$$

with $(s_i, U_i)_{i \in I} \sim (t_j, V_j)_{j \in J} \Leftrightarrow \forall i \in I, j \in J, z \in Z \cap U_i \cap V_j : (s_i)_z = (t_j)_z.$

For every open neighborhood U of Z, we have a restriction map $\rho_Z^U : \mathcal{F}(U) \to \mathcal{F}(Z), s \mapsto s|_Z := [(U, s)]$

- **Remark.** (i) The restriction of \mathcal{F} to a subspace Z is usually defined as $\mathcal{F}(Z) = (\iota^{-1}\mathcal{F})(Z)$, using the inverse image sheaf of the inclusion $\iota: Z \to X$. Since we did not cover this in the seminar, I'm giving an explicit description instead.
 - (ii) If $Z \subseteq X$ is open, this gives us the usual $\mathcal{F}(Z)$.
- (iii) For the case $Z = \{x\}$, this just gives us the stalk \mathcal{F}_x .

Definition 3.9. A sheaf \mathcal{F} on a topological space X is called *soft* if for every closed $Z \subseteq X$, the restriction map $\mathcal{F}(X) \to \mathcal{F}(Z)$ is surjective.

Remark. Let X be a topological space, $Z \subseteq X$ closed and \mathcal{F} a soft sheaf on X. Then $\mathcal{F}|_Z$ is a soft sheaf on Z: If $A \subseteq Z$ is closed, then it is also closed in X. Therefore the composition of restrictions $\mathcal{F}(X) \to \mathcal{F}(Z) \to \mathcal{F}(A)$ is surjective and hence $\mathcal{F}(Z) \to \mathcal{F}(A)$ is surjective.

Proposition 3.10. Assume that X is a paracompact Hausdorff space, $Z \subseteq X$ closed and \mathcal{F} a sheaf on X. Then the restriction maps ρ_Z^U induce an isomorphism

$$\operatorname{colim}_{Z \subseteq U} \mathcal{F}(U) = \{(U, s) \mid U \subseteq X \text{ open with } Z \subseteq U, s \in \mathcal{F}(U)\}/_{\sim} \cong \mathcal{F}(Z)$$

where in the middle term $(U,s) \sim (V,t) \Leftrightarrow$ there exists $Z \subseteq W \subseteq U \cap V$ open such that $s|_W = t|_W$.

Proof. Uses some topological results. See [Wed16], Proposition 9.1.

Example 3.11. (i) Let X be a paracompact Hausdorff space and let \mathcal{C}_X be the sheaf of continuous \mathbb{R} -valued functions on X. Then \mathcal{C}_X is soft. (It is however, in general, not flabby: Let $X = \mathbb{R}$ with the standard topology. The continuous function $s: (0, \infty) \to \mathbb{R}, x \mapsto \frac{1}{x}$ can not be extended to \mathbb{R}).

Proof. To show this, let $Z \subseteq X$ closed and $s \in \mathcal{C}_X(Z)$. Note that in general, $\mathcal{C}_X(Z) \neq \mathcal{C}_Z(Z)$, so we cannot directly apply Theorem 3.3 (iv)! Instead, we use Proposition 3.10 to get an open neighborhood $Z \subseteq U \subseteq X$ and $t \in \mathcal{C}_X(U)$ that extends s. We can then use Theorem 3.3 (iii) to find an open neighborhood $Z \subseteq V$ such that $\overline{V} \subseteq U$. Then Z and $X \setminus V$ are disjoint closed subsets of X and by Theorem 3.3 (i) we get a continuous function $f: X \to [0, 1]$ with $f|_Z = 1$ and $f_{X \setminus V} = 0$.

Thus $f|_U t$ also extends s (i. e. $(f|_U t)|_Z = t_Z = s_Z$) and can be extended to X by zero.

- (ii) It can be shown in a similar way that for X a real \mathcal{C}^{α} -manifold, $\alpha \in \mathbb{N} \cup \infty$, the sheaf of real valued \mathcal{C}^{α} -functions on X is soft. The proof relies on the fact that every point in X has a compact neighborhood that corresponds to a compact set $K \in \mathbb{R}^m$ via a chart. We can then use the fact that for all $U \in \mathbb{R}^m$ open and $K \in U$ compact, there exists a C^{∞} -function $\phi : \mathbb{R}^m \to [0, 1]$ with $\phi|_K = 1$, supp $\phi \subseteq U$ to extend functions by zero.
- (iii) We cannot use the same trick for holomorphic functions on complex manifolds: The set of zeros of a holomorphic function is discrete, so if we extend a holomorphic function by zero on the complement of a compact set, the result can not be holomorphic.
- (iv) Now, for example the sheaf of holomorphic functions \mathcal{O} on \mathbb{C} is not soft, as we can easily see: Let $Z \subseteq \mathbb{C}$ closed such that $Z \subseteq \mathbb{C}^- := \mathbb{C} \setminus \{x \in \mathbb{R} \mid x \leq 0\}$, and take the element $s \in \mathcal{O}(Z)$ represented by the complex logarithm ln. Due to the identity theorem, there are no other representatives and there is no globally holomorphic function on \mathcal{C} that extends ln. (Another example: $z \mapsto \sum_{n=0}^{\infty} z^n$ on $Z \subseteq \{z \in \mathcal{C} | z | < \frac{1}{2}\}$).
- (v) Constant sheaves are in general not soft. Take for example $\underline{\mathbb{Z}}$ on $X = \mathbb{C}$ with the Zariski topology. We saw before that this was flabby. But it is not soft, as the section $s \in \underline{\mathbb{Z}}(\{0,1\})$ with $s_0 = 0, s_1 = 1$ can not be extended to the whole space. (Remember that we must use Definition 3.8 here, not Proposition 3.10, to find that s).

Example 3.12. Let X be a paracompact Hausdorff space. Then every flabby sheaf \mathcal{F} on X is soft.

Proof. Let $Z \subseteq X$ be closed, and $s \in \mathcal{F}(Z)$. By Proposition 3.10 there exists an open neighborhood U of Z and $t \in \mathcal{F}(U)$ extending s. Since \mathcal{F} is flabby, we can extend t to X.

Proposition 3.13. Let (X, \mathcal{O}_X) be a ringed space with X paracompact Hausdorff and \mathcal{O}_X soft. Then every \mathcal{O}_X -module \mathcal{F} is soft.

Proof. Let $Z \subseteq X$ be closed and $s \in \mathcal{F}(Z)$. By Proposition 3.10 there exists an open neighborhood U of Z and $t \in \mathcal{F}(U)$ extending s. X is normal, and so we can use

Theorem 3.3 (iii) to find an open neighborhood $Z \subseteq V$ such that $\overline{V} \subseteq U$. Then Z and ∂V are disjoint closed subsets of X. Because \mathcal{O}_X is soft, $\mathcal{O}_X(X) \to \mathcal{O}_X(Z \cup \partial V)$ is surjective and we can find $u \in \mathcal{O}_X(X)$ such that for all $x \in Z$ we have $u_x = 1$ and for $x \in \partial V$ we have $u_x = 0$. Thus $u|_{\overline{V}}t|_{\overline{V}} \in \mathcal{F}(\overline{V})$ extends s and can be extended to an element of $\mathcal{F}(X)$ by zero.

Theorem 3.14. Let (X, \mathcal{O}_X) be a ringed space with X paracompact Hausdorff. Then every soft \mathcal{O}_X -module is Γ -acyclic.

Proof. Again, we want to use Lemma 1.4 to proof this. Examples 2.5 and 3.12 show that every injective \mathcal{O}_X -module is flabby and thus soft, so it remains to show that the second condition of the Lemma is fulfilled. So let $0 \to \mathcal{F}' \xrightarrow{\alpha} \mathcal{F} \xrightarrow{\beta} \mathcal{F}'' \to 0$ be a short exact sequence of \mathcal{O}_X -modules with $\mathcal{F}', \mathcal{F}$ soft. As in the proof of Lemma 2.6, we consider \mathcal{F}' as a subsheaf of \mathcal{F} , more specifically as ker β . To show surjectivity of $\beta_X : \mathcal{F}(X) \to \mathcal{F}''(X)$, let $s \in \mathcal{F}''(X)$. We know that for all $x \in X, \beta_x : \mathcal{F}_x \to \mathcal{F}''_x$ is surjective, that means β is surjective "near" any x. So we can find an open covering $(U_i)_{i\in I}$ of X such that for all $i \in I$, there is a section $s_i \in \mathcal{F}(U_i)$ with $\beta_{U_i}(s_i) = s|_{U_i}$. Because X is paracompact, we can assume $(U_i)_{i\in I}$ is locally finite. We use the Shrinking Lemma 3.5 to find another open covering $(V_i)_{i\in I}$ such that for all $i \in I$ the closure $S_i := \overline{V_i}$ is contained in U_i . For $J \subseteq I$ set $S_J := \bigcup_{i\in J} S_i$. Note that this is closed, because $(S_i)_{i\in I}$ is locally finite.

We define the set

$$\mathcal{C} := \{ (J,t) \mid J \subseteq I, t \in \mathcal{F}(S_J) \text{ s. t. } \beta_{S_J}(t|_{S_J}) = s|_{S_J} \},$$

 \mathcal{C} is nonempty, because $(\emptyset, *) \in \mathcal{C}$. We can order \mathcal{C} by $(J, t) \leq (J', t') \Leftrightarrow J \subseteq J'$ and $t'|_{S_J} = t$. Then it is inductively ordered by this relation, i. e. every chain has an upper bound given by the union of the sets and the glued-together sections. We apply Zorn's Lemma to get a maximal element of \mathcal{C} , say (J, t). We now proof that J = I, then t is a preimage of s on $S_I = X$.

Suppose there exists $i \in I \setminus J$. Then we have $s_i|_{S_i} \in \mathcal{F}(S_i)$ that gets mapped to $s|_{S_i}$ under β . Now, since both t and s_i get mapped to S on $S_J \cap S_i$, we get $t|_{S_J \cap S_i} - s_i|_{S_J \cap S_i} \in \ker \beta(S_J \cap S_i) = \mathcal{F}'(S_J \cap S_i)$. Since \mathcal{F}' is soft, we can extend this to some $t' \in \mathcal{F}'(S_i) \subseteq \mathcal{F}(S_i)$. Then, t and t' agree on $S_J \cap S_i$ and can be glued together to a section in $\mathcal{F}(S_J \cap S_i)$ that extends t and gets mapped to $s|_{S_J \cap S_i}$ under β , contradicting the maximality of J.

Now to show that \mathcal{F}'' is soft, let $Z \subseteq X$ be closed. We can apply what we've just shown to $\mathcal{F}'|_Z, \mathcal{F}|Z$ and $\mathcal{F}''|_Z$, because the first two are again soft. Then it is obvious from the diagram that the right vertical arrow must be surjective.

$$\begin{array}{cccc} \mathcal{F}(X) & \longrightarrow & \mathcal{F}''(X) \\ & \downarrow & & \downarrow \\ \mathcal{F}(Z) & \longrightarrow & \mathcal{F}''(Z) \end{array}$$

Theorem 3.15. Let X be a paracompact Hausdorff Space and \mathcal{F} a sheaf of abelian groups on X. Then \mathcal{F} is soft iff for every closed subspace $Z \subseteq X$, every $s \in \mathcal{F}(Z)$ and every open covering $(U_i)_{i \in I}$ of Z in X, for all $i \in I$ there exists $s_i \in \mathcal{F}(X)$ with $\operatorname{supp}(s_i) \subseteq U_i$ and for all $x \in Z$ we have $s_x = \sum_{i \in I} (s_i)_x$.

Suppose that \mathcal{F} is a sheaf of rings. Then it is soft iff the condition holds for Z = X and s = 1, *i. e.* we have partitions of unity.

Proof. The direction \Rightarrow can be seen in [Wed16], Proposition 9.9. The rest is omitted. \Box

3.3 Fine Sheaves

Definition 3.16 (Sheaf of homomorphisms of \mathcal{O}_X -modules). Let (X, \mathcal{O}_X) be a ringed space and let \mathcal{F}, \mathcal{G} be two \mathcal{O}_X -modules. The presheaf

$$U \mapsto \operatorname{Hom}_{\mathcal{O}_X|_U}(\mathcal{F}|_U, \mathcal{G}|_U)$$

with the obvious restriction maps is a sheaf. The right hand side is a $\mathcal{O}_X(U)$ -module. Therefore this sheaf has the structure of an \mathcal{O}_X -module and we will denote it by $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$.

Definition 3.17. Let (X, \mathcal{O}_X) be a ringed space and let \mathcal{F} be an \mathcal{O}_X -module. \mathcal{F} is said to be *fine* if $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{F})$ is soft.

Proposition 3.18. Let (X, \mathcal{O}_X) be a ringed space with X paracompact Hausdorff and \mathcal{O}_X soft. Then every \mathcal{O}_X -module \mathcal{F} is fine.

Proof. $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{F})$ is an \mathcal{O}_X -module, and as such it is soft by Proposition 3.13. \Box

Remark. If we view \mathcal{O}_X as a module over itself, the notions soft and fine are equivalent.

Remark. Using Theorem 3.15 and Proposition 3.18, we see that a sheaf on a paracompact Hausdorff space that is fine by [Voi02], Def. 4.35 is also fine by our Definition.

Proposition 3.19. Let (X, \mathcal{O}_X) be a ringed space with X paracompact Hausdorff and let \mathcal{F} be a fine \mathcal{O}_X -module. Then it is soft, and by consequence Γ -acyclic.

Proof. We can view \mathcal{F} as a module over the soft sheaf of rings $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{F})$, using the evaluation as scalar multiplication. Then it is soft by Proposition 3.13.

4 Conclusion

For the general case of X any topological space and \mathcal{F} an abelian sheaf on X, we saw the following implications:

 \mathcal{F} injective $\Longrightarrow \mathcal{F}$ flabby $\Longrightarrow \mathcal{F}$ acyclic

Because we have functorial flabby resolutions using the Godement-construction, we can view sheaf cohomology as a functor.

We then added some more structure, namely looking at ringed spaces (X, \mathcal{O}_X) with X paracompact Hausdorff. Then we additionally have for an \mathcal{O}_X -module \mathcal{F} :

Bibliography

- [Bre97] Glen E. Bredon, *Sheaf theory*, 2. ed., Graduate texts in mathematics, Springer, New York ; Heidelberg [u.a.], 1997 (eng).
- [Voi02] Claire Voisin, 1. publ, Cambridge studies in advanced mathematics, Cambridge University Press, Cambridge, 2002 (eng).
- [Wed16] Torsten Wedhorn, *Manifolds, Sheaves, and Cohomology*, SpringerLink : Bücher, Springer Spektrum, Wiesbaden, 2016 (eng).